CVEdetails.com the ultimate security vulnerability data source
(e.g.: CVE-2009-1234 or 2010-1234 or 20101234)
Log In   Register
Vulnerability Feeds & WidgetsNew   www.itsecdb.com  

Bouncycastle : Security Vulnerabilities

Press ESC to close
# CVE ID CWE ID # of Exploits Vulnerability Type(s) Publish Date Update Date Score Gained Access Level Access Complexity Authentication Conf. Integ. Avail.
1 CVE-2018-1000613 502 Exec Code 2018-07-09 2019-04-23
7.5
None Remote Low Not required Partial Partial Partial
Legion of the Bouncy Castle Legion of the Bouncy Castle Java Cryptography APIs 1.58 up to but not including 1.60 contains a CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') vulnerability in XMSS/XMSS^MT private key deserialization that can result in Deserializing an XMSS/XMSS^MT private key can result in the execution of unexpected code. This attack appear to be exploitable via A handcrafted private key can include references to unexpected classes which will be picked up from the class path for the executing application. This vulnerability appears to have been fixed in 1.60 and later.
2 CVE-2018-1000180 310 2018-06-05 2019-07-23
5.0
None Remote Low Not required Partial None None
Bouncy Castle BC 1.54 - 1.59, BC-FJA 1.0.0, BC-FJA 1.0.1 and earlier have a flaw in the Low-level interface to RSA key pair generator, specifically RSA Key Pairs generated in low-level API with added certainty may have less M-R tests than expected. This appears to be fixed in versions BC 1.60 beta 4 and later, BC-FJA 1.0.2 and later.
3 CVE-2018-5382 310 2018-04-16 2018-10-17
7.5
None Remote Low Not required Partial Partial Partial
Bouncy Castle BKS version 1 keystore (BKS-V1) files use an HMAC that is only 16 bits long, which can allow an attacker to compromise the integrity of a BKS-V1 keystore. All BKS-V1 keystores are vulnerable. Bouncy Castle release 1.47 introduces BKS version 2, which uses a 160-bit MAC.
4 CVE-2017-13098 310 2017-12-12 2018-10-12
4.3
None Remote Medium Not required Partial None None
BouncyCastle TLS prior to version 1.0.3, when configured to use the JCE (Java Cryptography Extension) for cryptographic functions, provides a weak Bleichenbacher oracle when any TLS cipher suite using RSA key exchange is negotiated. An attacker can recover the private key from a vulnerable application. This vulnerability is referred to as "ROBOT."
5 CVE-2016-1000352 310 2018-06-04 2018-11-28
5.8
None Remote Medium Not required Partial Partial None
In the Bouncy Castle JCE Provider version 1.55 and earlier the ECIES implementation allowed the use of ECB mode. This mode is regarded as unsafe and support for it has been removed from the provider.
6 CVE-2016-1000346 320 2018-06-04 2018-11-28
4.3
None Remote Medium Not required Partial None None
In the Bouncy Castle JCE Provider version 1.55 and earlier the other party DH public key is not fully validated. This can cause issues as invalid keys can be used to reveal details about the other party's private key where static Diffie-Hellman is in use. As of release 1.56 the key parameters are checked on agreement calculation.
7 CVE-2016-1000345 361 2018-06-04 2018-11-28
4.3
None Remote Medium Not required Partial None None
In the Bouncy Castle JCE Provider version 1.55 and earlier the DHIES/ECIES CBC mode vulnerable to padding oracle attack. For BC 1.55 and older, in an environment where timings can be easily observed, it is possible with enough observations to identify when the decryption is failing due to padding.
8 CVE-2016-1000344 310 2018-06-04 2018-11-28
5.8
None Remote Medium Not required Partial Partial None
In the Bouncy Castle JCE Provider version 1.55 and earlier the DHIES implementation allowed the use of ECB mode. This mode is regarded as unsafe and support for it has been removed from the provider.
9 CVE-2016-1000343 310 2018-06-04 2018-11-28
5.0
None Remote Low Not required Partial None None
In the Bouncy Castle JCE Provider version 1.55 and earlier the DSA key pair generator generates a weak private key if used with default values. If the JCA key pair generator is not explicitly initialised with DSA parameters, 1.55 and earlier generates a private value assuming a 1024 bit key size. In earlier releases this can be dealt with by explicitly passing parameters to the key pair generator.
10 CVE-2016-1000342 347 2018-06-04 2018-11-28
5.0
None Remote Low Not required None Partial None
In the Bouncy Castle JCE Provider version 1.55 and earlier ECDSA does not fully validate ASN.1 encoding of signature on verification. It is possible to inject extra elements in the sequence making up the signature and still have it validate, which in some cases may allow the introduction of 'invisible' data into a signed structure.
11 CVE-2016-1000341 361 2018-06-04 2018-11-28
4.3
None Remote Medium Not required Partial None None
In the Bouncy Castle JCE Provider version 1.55 and earlier DSA signature generation is vulnerable to timing attack. Where timings can be closely observed for the generation of signatures, the lack of blinding in 1.55, or earlier, may allow an attacker to gain information about the signature's k value and ultimately the private value as well.
12 CVE-2016-1000340 19 2018-06-04 2018-11-28
5.0
None Remote Low Not required None Partial None
In the Bouncy Castle JCE Provider versions 1.51 to 1.55, a carry propagation bug was introduced in the implementation of squaring for several raw math classes have been fixed (org.bouncycastle.math.raw.Nat???). These classes are used by our custom elliptic curve implementations (org.bouncycastle.math.ec.custom.**), so there was the possibility of rare (in general usage) spurious calculations for elliptic curve scalar multiplications. Such errors would have been detected with high probability by the output validation for our scalar multipliers.
13 CVE-2016-1000339 310 +Info 2018-06-04 2018-11-28
5.0
None Remote Low Not required Partial None None
In the Bouncy Castle JCE Provider version 1.55 and earlier the primary engine class used for AES was AESFastEngine. Due to the highly table driven approach used in the algorithm it turns out that if the data channel on the CPU can be monitored the lookup table accesses are sufficient to leak information on the AES key being used. There was also a leak in AESEngine although it was substantially less. AESEngine has been modified to remove any signs of leakage (testing carried out on Intel X86-64) and is now the primary AES class for the BC JCE provider from 1.56. Use of AESFastEngine is now only recommended where otherwise deemed appropriate.
14 CVE-2016-1000338 347 2018-06-01 2018-10-17
5.0
None Remote Low Not required None Partial None
In Bouncy Castle JCE Provider version 1.55 and earlier the DSA does not fully validate ASN.1 encoding of signature on verification. It is possible to inject extra elements in the sequence making up the signature and still have it validate, which in some cases may allow the introduction of 'invisible' data into a signed structure.
15 CVE-2016-2427 200 +Info 2016-04-17 2016-08-18
4.3
None Remote Medium Not required Partial None None
** DISPUTED ** The AES-GCM specification in RFC 5084, as used in Android 5.x and 6.x, recommends 12 octets for the aes-ICVlen parameter field, which might make it easier for attackers to defeat a cryptographic protection mechanism and discover an authentication key via a crafted application, aka internal bug 26234568. NOTE: The vendor disputes the existence of this potential issue in Android, stating "This CVE was raised in error: it referred to the authentication tag size in GCM, whose default according to ASN.1 encoding (12 bytes) can lead to vulnerabilities. After careful consideration, it was decided that the insecure default value of 12 bytes was a default only for the encoding and not default anywhere else in Android, and hence no vulnerability existed."
16 CVE-2015-7940 310 2015-11-09 2019-01-16
5.0
None Remote Low Not required Partial None None
The Bouncy Castle Java library before 1.51 does not validate a point is withing the elliptic curve, which makes it easier for remote attackers to obtain private keys via a series of crafted elliptic curve Diffie Hellman (ECDH) key exchanges, aka an "invalid curve attack."
17 CVE-2013-1624 310 2013-02-08 2018-10-30
4.0
None Remote High Not required Partial Partial None
The TLS implementation in the Bouncy Castle Java library before 1.48 and C# library before 1.8 does not properly consider timing side-channel attacks on a noncompliant MAC check operation during the processing of malformed CBC padding, which allows remote attackers to conduct distinguishing attacks and plaintext-recovery attacks via statistical analysis of timing data for crafted packets, a related issue to CVE-2013-0169.
18 CVE-2007-6721 2009-03-29 2012-11-15
10.0
None Remote Low Not required Complete Complete Complete
The Legion of the Bouncy Castle Java Cryptography API before release 1.38, as used in Crypto Provider Package before 1.36, has unknown impact and remote attack vectors related to "a Bleichenbacher vulnerability in simple RSA CMS signatures without signed attributes."
Total number of vulnerabilities : 18   Page : 1 (This Page)
CVE is a registred trademark of the MITRE Corporation and the authoritative source of CVE content is MITRE's CVE web site. CWE is a registred trademark of the MITRE Corporation and the authoritative source of CWE content is MITRE's CWE web site. OVAL is a registered trademark of The MITRE Corporation and the authoritative source of OVAL content is MITRE's OVAL web site.
Use of this information constitutes acceptance for use in an AS IS condition. There are NO warranties, implied or otherwise, with regard to this information or its use. Any use of this information is at the user's risk. It is the responsibility of user to evaluate the accuracy, completeness or usefulness of any information, opinion, advice or other content. EACH USER WILL BE SOLELY RESPONSIBLE FOR ANY consequences of his or her direct or indirect use of this web site. ALL WARRANTIES OF ANY KIND ARE EXPRESSLY DISCLAIMED. This site will NOT BE LIABLE FOR ANY DIRECT, INDIRECT or any other kind of loss.