The product does not ensure or incorrectly ensures that structured messages or data are well-formed and that certain security properties are met before being read from an upstream component or sent to a downstream component.

Related CAPEC definitions

An attacker utilizes crafted XML user-controllable input to probe, attack, and inject data into the XML database, using techniques similar to SQL injection. The user-controllable input can allow for unauthorized viewing of data, bypassing authentication or the front-end application for direct XML database access, and possibly altering database information.
Inter-component protocols are used to communicate between different software and hardware modules within a single computer. Common examples are: interrupt signals and data pipes. Subverting the protocol can allow an adversary to impersonate others, discover sensitive information, control the outcome of a session, or perform other attacks. This type of attack targets invalid assumptions that may be inherent in implementers of the protocol, incorrect implementations of the protocol, or vulnerabilities in the protocol itself.
Data Interchange Protocols are used to transmit structured data between entities. These protocols are often specific to a particular domain (B2B: purchase orders, invoices, transport logistics and waybills, medical records). They are often, but not always, XML-based. Subverting the protocol can allow an adversary to impersonate others, discover sensitive information, control the outcome of a session, or perform other attacks. This type of attack targets invalid assumptions that may be inherent in implementers of the protocol, incorrect implementations of the protocol, or vulnerabilities in the protocol itself.
An adversary manipulates a web service related protocol to cause a web application or service to react differently than intended. This can either be performed through the manipulation of call parameters to include unexpected values, or by changing the called function to one that should normally be restricted or limited. By leveraging this pattern of attack, the adversary is able to gain access to data or resources normally restricted, or to cause the application or service to crash.
Simple Object Access Protocol (SOAP) is used as a communication protocol between a client and server to invoke web services on the server. It is an XML-based protocol, and therefore suffers from many of the same shortcomings as other XML-based protocols. Adversaries can make use of these shortcomings and manipulate the content of SOAP paramters, leading to undesirable behavior on the server and allowing the adversary to carry out a number of further attacks.
Some APIs will strip certain leading characters from a string of parameters. An adversary can intentionally introduce leading "ghost" characters (extra characters that don't affect the validity of the request at the API layer) that enable the input to pass the filters and therefore process the adversary's input. This occurs when the targeted API will accept input data in several syntactic forms and interpret it in the equivalent semantic way, while the filter does not take into account the full spectrum of the syntactic forms acceptable to the targeted API.
An adversary abuses the flexibility and discrepancies in the parsing and interpretation of HTTP Request messages using various HTTP headers, request-line and body parameters as well as message sizes (denoted by the end of message signaled by a given HTTP header) by different intermediary HTTP agents (e.g., load balancer, reverse proxy, web caching proxies, application firewalls, etc.) to secretly send unauthorized and malicious HTTP requests to a back-end HTTP agent (e.g., web server). See CanPrecede relationships for possible consequences.
An adversary manipulates and injects malicious content, in the form of secret unauthorized HTTP responses, into a single HTTP response from a vulnerable or compromised back-end HTTP agent (e.g., web server) or into an already spoofed HTTP response from an adversary controlled domain/site. See CanPrecede relationships for possible consequences.
An attacker supplies the target software with input data that contains sequences of special characters designed to bypass input validation logic. This exploit relies on the target making multiples passes over the input data and processing a "layer" of special characters with each pass. In this manner, the attacker can disguise input that would otherwise be rejected as invalid by concealing it with layers of special/escape characters that are stripped off by subsequent processing steps. The goal is to first discover cases where the input validation layer executes before one or more parsing layers. That is, user input may go through the following logic in an application: <parser1> --> <input validator> --> <parser2>. In such cases, the attacker will need to provide input that will pass through the input validator, but after passing through parser2, will be converted into something that the input validator was supposed to stop.
An attacker makes use of Cascading Style Sheets (CSS) injection to steal data cross domain from the victim's browser. The attack works by abusing the standards relating to loading of CSS: 1. Send cookies on any load of CSS (including cross-domain) 2. When parsing returned CSS ignore all data that does not make sense before a valid CSS descriptor is found by the CSS parser.
An adversary embeds one or more null bytes in input to the target software. This attack relies on the usage of a null-valued byte as a string terminator in many environments. The goal is for certain components of the target software to stop processing the input when it encounters the null byte(s).
If a string is passed through a filter of some kind, then a terminal NULL may not be valid. Using alternate representation of NULL allows an adversary to embed the NULL mid-string while postfixing the proper data so that the filter is avoided. One example is a filter that looks for a trailing slash character. If a string insertion is possible, but the slash must exist, an alternate encoding of NULL in mid-string may be used.
This attack targets the encoding of the URL combined with the encoding of the slash characters. An attacker can take advantage of the multiple ways of encoding a URL and abuse the interpretation of the URL. A URL may contain special character that need special syntax handling in order to be interpreted. Special characters are represented using a percentage character followed by two digits representing the octet code of the original character (%HEX-CODE). For instance US-ASCII space character would be represented with %20. This is often referred as escaped ending or percent-encoding. Since the server decodes the URL from the requests, it may restrict the access to some URL paths by validating and filtering out the URL requests it received. An attacker will try to craft an URL with a sequence of special characters which once interpreted by the server will be equivalent to a forbidden URL. It can be difficult to protect against this attack since the URL can contain other format of encoding such as UTF-8 encoding, Unicode-encoding, etc.
This attack exploits target software that constructs SQL statements based on user input. An attacker crafts input strings so that when the target software constructs SQL statements based on the input, the resulting SQL statement performs actions other than those the application intended. SQL Injection results from failure of the application to appropriately validate input.
Blind SQL Injection results from an insufficient mitigation for SQL Injection. Although suppressing database error messages are considered best practice, the suppression alone is not sufficient to prevent SQL Injection. Blind SQL Injection is a form of SQL Injection that overcomes the lack of error messages. Without the error messages that facilitate SQL Injection, the adversary constructs input strings that probe the target through simple Boolean SQL expressions. The adversary can determine if the syntax and structure of the injection was successful based on whether the query was executed or not. Applied iteratively, the adversary determines how and where the target is vulnerable to SQL Injection.
This attack targets the use of the backslash in alternate encoding. An adversary can provide a backslash as a leading character and causes a parser to believe that the next character is special. This is called an escape. By using that trick, the adversary tries to exploit alternate ways to encode the same character which leads to filter problems and opens avenues to attack.
This attack targets the encoding of the Slash characters. An adversary would try to exploit common filtering problems related to the use of the slashes characters to gain access to resources on the target host. Directory-driven systems, such as file systems and databases, typically use the slash character to indicate traversal between directories or other container components. For murky historical reasons, PCs (and, as a result, Microsoft OSs) choose to use a backslash, whereas the UNIX world typically makes use of the forward slash. The schizophrenic result is that many MS-based systems are required to understand both forms of the slash. This gives the adversary many opportunities to discover and abuse a number of common filtering problems. The goal of this pattern is to discover server software that only applies filters to one version, but not the other.
An attacker can craft special user-controllable input consisting of XPath expressions to inject the XML database and bypass authentication or glean information that they normally would not be able to. XPath Injection enables an attacker to talk directly to the XML database, thus bypassing the application completely. XPath Injection results from the failure of an application to properly sanitize input used as part of dynamic XPath expressions used to query an XML database.
This attack utilizes XQuery to probe and attack server systems; in a similar manner that SQL Injection allows an attacker to exploit SQL calls to RDBMS, XQuery Injection uses improperly validated data that is passed to XQuery commands to traverse and execute commands that the XQuery routines have access to. XQuery injection can be used to enumerate elements on the victim's environment, inject commands to the local host, or execute queries to remote files and data sources.
Please note that CWE definitions are provided as a quick reference only. Visit for a complete list of CWE entries and for more details.
This web site uses cookies for managing your session, storing preferences, website analytics and additional purposes described in our privacy policy.
By using this web site you are agreeing to terms of use!