CVEdetails.com the ultimate security vulnerability data source
(e.g.: CVE-2009-1234 or 2010-1234 or 20101234)
Log In   Register
Vulnerability Feeds & WidgetsNew   www.itsecdb.com  

Vulnerability Details : CVE-2021-32629

Cranelift is an open-source code generator maintained by Bytecode Alliance. It translates a target-independent intermediate representation into executable machine code. There is a bug in 0.73 of the Cranelift x64 backend that can create a scenario that could result in a potential sandbox escape in a Wasm program. This bug was introduced in the new backend on 2020-09-08 and first included in a release on 2020-09-30, but the new backend was not the default prior to 0.73. The recently-released version 0.73 with default settings, and prior versions with an explicit build flag to select the new backend, are vulnerable. The bug in question performs a sign-extend instead of a zero-extend on a value loaded from the stack, under a specific set of circumstances. If those circumstances occur, the bug could allow access to memory addresses upto 2GiB before the start of the Wasm program heap. If the heap bound is larger than 2GiB, then it would be possible to read memory from a computable range dependent on the size of the heaps bound. The impact of this bug is highly dependent on heap implementation, specifically: * if the heap has bounds checks, and * does not rely exclusively on guard pages, and * the heap bound is 2GiB or smaller * then this bug cannot be used to reach memory from another Wasm program heap. The impact of the vulnerability is mitigated if there is no memory mapped in the range accessible using this bug, for example, if there is a 2 GiB guard region before the Wasm program heap. The bug in question performs a sign-extend instead of a zero-extend on a value loaded from the stack, when the register allocator reloads a spilled integer value narrower than 64 bits. This interacts poorly with another optimization: the instruction selector elides a 32-to-64-bit zero-extend operator when we know that an instruction producing a 32-bit value actually zeros the upper 32 bits of its destination register. Hence, we rely on these zeroed bits, but the type of the value is still i32, and the spill/reload reconstitutes those bits as the sign extension of the i32’s MSB. The issue would thus occur when: * An i32 value in a Wasm program is greater than or equal to 0x8000_0000; * The value is spilled and reloaded by the register allocator due to high register pressure in the program between the value’s definition and its use; * The value is produced by an instruction that we know to be “special� in that it zeroes the upper 32 bits of its destination: add, sub, mul, and, or; * The value is then zero-extended to 64 bits in the Wasm program; * The resulting 64-bit value is used. Under these circumstances there is a potential sandbox escape when the i32 value is a pointer. The usual code emitted for heap accesses zero-extends the Wasm heap address, adds it to a 64-bit heap base, and accesses the resulting address. If the zero-extend becomes a sign-extend, the program could reach backward and access memory up to 2GiB before the start of its heap. In addition to assessing the nature of the code generation bug in Cranelift, we have also determined that under specific circumstances, both Lucet and Wasmtime using this version of Cranelift may be exploitable. See referenced GitHub Advisory for more details.
Publish Date : 2021-05-24 Last Update Date : 2021-06-03
Search Twitter   Search YouTube   Search Google

- CVSS Scores & Vulnerability Types

CVSS Score
4.6
Confidentiality Impact Partial (There is considerable informational disclosure.)
Integrity Impact Partial (Modification of some system files or information is possible, but the attacker does not have control over what can be modified, or the scope of what the attacker can affect is limited.)
Availability Impact Partial (There is reduced performance or interruptions in resource availability.)
Access Complexity Low (Specialized access conditions or extenuating circumstances do not exist. Very little knowledge or skill is required to exploit. )
Authentication Not required (Authentication is not required to exploit the vulnerability.)
Gained Access None
Vulnerability Type(s)
CWE ID 788

- Products Affected By CVE-2021-32629

# Product Type Vendor Product Version Update Edition Language
1 Application Bytecodealliance Cranelift-codegen * * * * Version Details Vulnerabilities

- Number Of Affected Versions By Product

Vendor Product Vulnerable Versions
Bytecodealliance Cranelift-codegen 1

- References For CVE-2021-32629

https://crates.io/crates/cranelift-codegen
https://www.fastly.com/security-advisories/memory-access-due-to-code-generation-flaw-in-cranelift-module
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-hpqh-2wqx-7qp5 CONFIRM
https://github.com/bytecodealliance/wasmtime/commit/95559c01aaa7c061088a433040f31e8291fb09d0

- Metasploit Modules Related To CVE-2021-32629

There are not any metasploit modules related to this CVE entry (Please visit www.metasploit.com for more information)


CVE is a registred trademark of the MITRE Corporation and the authoritative source of CVE content is MITRE's CVE web site. CWE is a registred trademark of the MITRE Corporation and the authoritative source of CWE content is MITRE's CWE web site. OVAL is a registered trademark of The MITRE Corporation and the authoritative source of OVAL content is MITRE's OVAL web site.
Use of this information constitutes acceptance for use in an AS IS condition. There are NO warranties, implied or otherwise, with regard to this information or its use. Any use of this information is at the user's risk. It is the responsibility of user to evaluate the accuracy, completeness or usefulness of any information, opinion, advice or other content. EACH USER WILL BE SOLELY RESPONSIBLE FOR ANY consequences of his or her direct or indirect use of this web site. ALL WARRANTIES OF ANY KIND ARE EXPRESSLY DISCLAIMED. This site will NOT BE LIABLE FOR ANY DIRECT, INDIRECT or any other kind of loss.