CVEdetails.com the ultimate security vulnerability data source
(e.g.: CVE-2009-1234 or 2010-1234 or 20101234)
Log In   Register
Vulnerability Feeds & WidgetsNew   www.itsecdb.com  

Microsoft » Windows 8.1 : Security Vulnerabilities (CVSS score between 5 and 5.99)

Press ESC to close
# CVE ID CWE ID # of Exploits Vulnerability Type(s) Publish Date Update Date Score Gained Access Level Access Complexity Authentication Conf. Integ. Avail.
1 CVE-2017-11772 200 +Info 2017-10-13 2017-10-20
5.0
None Remote Low Not required Partial None None
The Microsoft Windows Search component on Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allows an information disclosure when it fails to properly handle objects in memory, aka "Microsoft Search Information Disclosure Vulnerability".
2 CVE-2017-8563 264 2017-07-11 2017-07-14
5.1
None Remote High Not required Partial Partial Partial
Microsoft Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an elevation of privilege vulnerability due to Kerberos falling back to NT LAN Manager (NTLM) Authentication Protocol as the default authentication protocol, aka "Windows Elevation of Privilege Vulnerability".
3 CVE-2017-0184 20 DoS 2017-04-12 2017-04-18
5.2
None Local Network Medium Single system None None Complete
A denial of service vulnerability exists when Microsoft Hyper-V running on a host server fails to properly validate input from a privileged user on a guest operating system, aka "Hyper-V Denial of Service Vulnerability." This CVE ID is unique from CVE-2017-0178, CVE-2017-0179, CVE-2017-0182, CVE-2017-0183, CVE-2017-0185, and CVE-2017-0186.
4 CVE-2017-0178 20 DoS 2017-04-12 2017-04-18
5.2
None Local Network Medium Single system None None Complete
A denial of service vulnerability exists when Microsoft Hyper-V running on Windows 10, Windows 10 1511, Windows 10 1607, Windows 8.1, Windows Server 2012 R2, and Windows Server 2016 host server fails to properly validate input from a privileged user on a guest operating system, aka "Hyper-V Denial of Service Vulnerability." This CVE ID is unique from CVE-2017-0179, CVE-2017-0182, CVE-2017-0183, CVE-2017-0184, CVE-2017-0185, and CVE-2017-0186.
5 CVE-2017-0169 20 2017-04-12 2017-07-10
5.2
None Local Network Medium Single system Complete None None
An information disclosure vulnerability exists when Windows Hyper-V running on a Windows 8.1, Windows Server 2012. or Windows Server 2012 R2 host operating system fails to properly validate input from an authenticated user on a guest operating system, aka "Hyper-V Information Disclosure Vulnerability." This CVE ID is unique from CVE-2017-0168.
6 CVE-2016-7247 284 Bypass 2016-11-10 2017-07-27
5.0
None Remote Low Not required None Partial None
Microsoft Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, and 1607, and Windows Server 2016 allow physically proximate attackers to bypass the Secure Boot protection mechanism via a crafted boot policy, aka "Secure Boot Component Vulnerability."
7 CVE-2016-3263 200 Bypass +Info 2016-10-13 2017-07-29
5.0
None Remote Low Not required Partial None None
Graphics Device Interface (aka GDI or GDI+) in Microsoft Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows RT 8.1; Windows 10 Gold, 1511, and 1607; Office 2007 SP3; Office 2010 SP2; Word Viewer; Skype for Business 2016; Lync 2013 SP1; Lync 2010; Lync 2010 Attendee; and Live Meeting 2007 Console allows remote attackers to bypass the ASLR protection mechanism via unspecified vectors, aka "GDI+ Information Disclosure Vulnerability," a different vulnerability than CVE-2016-3262.
8 CVE-2016-3262 200 Bypass +Info 2016-10-13 2017-07-29
5.0
None Remote Low Not required Partial None None
Graphics Device Interface (aka GDI or GDI+) in Microsoft Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows RT 8.1; Windows 10 Gold, 1511, and 1607; Office 2007 SP3; Office 2010 SP2; Word Viewer; Skype for Business 2016; Lync 2013 SP1; Lync 2010; Lync 2010 Attendee; and Live Meeting 2007 Console allows remote attackers to bypass the ASLR protection mechanism via unspecified vectors, aka "GDI+ Information Disclosure Vulnerability," a different vulnerability than CVE-2016-3263.
9 CVE-2016-3209 200 Bypass +Info 2016-10-13 2017-07-29
5.0
None Remote Low Not required Partial None None
Graphics Device Interface (aka GDI or GDI+) in Microsoft Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows RT 8.1; Windows 10 Gold, 1511, and 1607; Office 2007 SP3; Office 2010 SP2; Word Viewer; Skype for Business 2016; Lync 2013 SP1; Lync 2010; Lync 2010 Attendee; Live Meeting 2007 Console; .NET Framework 3.0 SP2, 3.5, 3.5.1, 4.5.2, and 4.6; and Silverlight 5 allows remote attackers to bypass the ASLR protection mechanism via unspecified vectors, aka "True Type Font Parsing Information Disclosure Vulnerability."
10 CVE-2016-0128 254 2016-04-12 2016-12-02
5.8
None Remote Medium Not required Partial Partial None
The SAM and LSAD protocol implementations in Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, and Windows 10 Gold and 1511 do not properly establish an RPC channel, which allows man-in-the-middle attackers to perform protocol-downgrade attacks and impersonate users by modifying the client-server data stream, aka "Windows SAM and LSAD Downgrade Vulnerability" or "BADLOCK."
11 CVE-2016-0044 20 DoS 2016-02-10 2016-12-05
5.0
None Remote Low Not required None None Partial
Sync Framework in Microsoft Windows 8.1, Windows Server 2012 R2, and Windows RT 8.1 allows remote attackers to cause a denial of service (SyncShareSvc service outage) via crafted "change batch" data, aka "Windows DLL Loading Denial of Service Vulnerability."
12 CVE-2015-6112 20 +Info 2015-11-11 2016-12-07
5.8
None Remote Medium Not required Partial Partial None
SChannel in Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 lacks the required extended master-secret binding support to ensure that a server's X.509 certificate is the same during renegotiation as it was before renegotiation, which allows man-in-the-middle attackers to obtain sensitive information or modify TLS session data via a "triple handshake attack," aka "Schannel TLS Triple Handshake Vulnerability."
13 CVE-2015-2417 20 +Priv 2015-07-14 2017-09-21
5.0
None Remote Low Not required None Partial None
OLE in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 allows remote attackers to gain privileges via crafted input, as demonstrated by a transition from Low Integrity to Medium Integrity, aka "OLE Elevation of Privilege Vulnerability," a different vulnerability than CVE-2015-2416.
14 CVE-2015-2416 20 +Priv 2015-07-14 2017-09-21
5.0
None Remote Low Not required None Partial None
OLE in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 allows remote attackers to gain privileges via crafted input, as demonstrated by a transition from Low Integrity to Medium Integrity, aka "OLE Elevation of Privilege Vulnerability," a different vulnerability than CVE-2015-2417.
15 CVE-2015-1716 310 2015-05-13 2017-01-02
5.0
None Remote Low Not required Partial None None
Schannel in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 does not properly restrict Diffie-Hellman Ephemeral (DHE) key lengths, which makes it easier for remote attackers to defeat cryptographic protection mechanisms via unspecified vectors, aka "Schannel Information Disclosure Vulnerability."
16 CVE-2015-0095 DoS Bypass +Info 2015-03-11 2015-09-10
5.6
None Local Low Not required Partial None Complete
The kernel-mode drivers in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 allow local users to cause a denial of service (NULL pointer dereference and blue screen), or obtain sensitive information from kernel memory and possibly bypass the ASLR protection mechanism, via a crafted application, aka "Microsoft Windows Kernel Memory Disclosure Vulnerability."
17 CVE-2015-0089 200 Bypass +Info 2015-03-11 2016-11-28
5.0
None Remote Low Not required Partial None None
Adobe Font Driver in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 allows remote attackers to obtain sensitive information from kernel memory, and possibly bypass the KASLR protection mechanism, via a crafted font, aka "Adobe Font Driver Information Disclosure Vulnerability," a different vulnerability than CVE-2015-0087.
18 CVE-2015-0087 200 Bypass +Info 2015-03-11 2016-11-28
5.0
None Remote Low Not required Partial None None
Adobe Font Driver in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 allows remote attackers to obtain sensitive information from kernel memory, and possibly bypass the KASLR protection mechanism, via a crafted font, aka "Adobe Font Driver Information Disclosure Vulnerability," a different vulnerability than CVE-2015-0089.
19 CVE-2014-6355 200 Bypass +Info 2014-12-10 2014-12-11
5.0
None Remote Low Not required Partial None None
The Graphics Component in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 does not properly process JPEG images, which makes it easier for remote attackers to bypass the ASLR protection mechanism via a crafted web site, aka "Graphics Component Information Disclosure Vulnerability."
20 CVE-2014-6318 287 Bypass 2014-11-11 2017-01-06
5.0
None Remote Low Not required None Partial None
The audit logon feature in Remote Desktop Protocol (RDP) in Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 does not properly log unauthorized login attempts supplying valid credentials, which makes it easier for remote attackers to bypass intended access restrictions via a series of attempts, aka "Remote Desktop Protocol (RDP) Failure to Audit Vulnerability."
21 CVE-2014-1811 20 DoS 2014-06-11 2016-09-09
5.0
None Remote Low Not required None None Partial
The TCP implementation in Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 allows remote attackers to cause a denial of service (non-paged pool memory consumption and system hang) via malformed data in the Options field of a TCP header, aka "TCP Denial of Service Vulnerability."
22 CVE-2014-0296 310 +Info 2014-06-11 2015-12-23
5.1
None Remote High Not required Partial Partial Partial
The Remote Desktop Protocol (RDP) implementation in Microsoft Windows 7 SP1, Windows 8, Windows 8.1, and Windows Server 2012 Gold and R2 does not properly encrypt sessions, which makes it easier for man-in-the-middle attackers to obtain sensitive information by sniffing the network or modify session content by sending crafted RDP packets, aka "RDP MAC Vulnerability."
23 CVE-2013-7332 399 DoS 2014-02-26 2014-03-10
5.0
None Remote Low Not required None None Partial
The Microsoft.XMLDOM ActiveX control in Microsoft Windows 8.1 and earlier does not properly detect recursion during entity expansion, which allows remote attackers to cause a denial of service (memory and CPU consumption) via a crafted XML document containing a large number of nested entity references, a similar issue to CVE-2003-1564.
24 CVE-2013-7331 20 2014-02-26 2017-01-06
5.8
None Remote Medium Not required Partial None Partial
The Microsoft.XMLDOM ActiveX control in Microsoft Windows 8.1 and earlier allows remote attackers to determine the existence of local pathnames, UNC share pathnames, intranet hostnames, and intranet IP addresses by examining error codes, as demonstrated by a res:// URL, and exploited in the wild in February 2014.
25 CVE-2013-3869 20 DoS 2013-11-12 2017-09-18
5.0
None Remote Low Not required None None Partial
Microsoft Windows XP SP2 and SP3, Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 allow remote attackers to cause a denial of service (daemon hang) via a web-service request containing a crafted X.509 certificate that is not properly handled during validation, aka "Digital Signatures Vulnerability."
Total number of vulnerabilities : 25   Page : 1 (This Page)
CVE is a registred trademark of the MITRE Corporation and the authoritative source of CVE content is MITRE's CVE web site. CWE is a registred trademark of the MITRE Corporation and the authoritative source of CWE content is MITRE's CWE web site. OVAL is a registered trademark of The MITRE Corporation and the authoritative source of OVAL content is MITRE's OVAL web site.
Use of this information constitutes acceptance for use in an AS IS condition. There are NO warranties, implied or otherwise, with regard to this information or its use. Any use of this information is at the user's risk. It is the responsibility of user to evaluate the accuracy, completeness or usefulness of any information, opinion, advice or other content. EACH USER WILL BE SOLELY RESPONSIBLE FOR ANY consequences of his or her direct or indirect use of this web site. ALL WARRANTIES OF ANY KIND ARE EXPRESSLY DISCLAIMED. This site will NOT BE LIABLE FOR ANY DIRECT, INDIRECT or any other kind of loss.